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AND AFPLICATIONS OF NUON COOLING

David Neuffer
Laboratory, Los Alemos, New Mexico 87545

The basic principles of the application of “ioni-
zation cooling” to obtain high phaae-~p~ce denoity muon

beam. ●re deccribed, ●nd lte limitation ●re outlined.
Sample cooling scenarios ●re presented. Applications
of cooled muon beams in high-:nergy scceleratore ●re
suggested; Mgh-luminosity
~l-TeV energy ●re possible.

u -U- ●nd u-p collidero ●t

Introduction

Electron-positron (e+-e-) collidere heve been ●e-
s~nciel tools in gaining ●n underctendlng of particle

physice. However, their future uoe ●t higher energies
ie eeverely limited by radiation processes. Synchro-
trons radiation in ●torage ring- caueeo ●lectron- to
lose ●nergy ●t ● rate proportional to the fourth power
of the ●lectron ●nergy, and
prevents construction

of •~hic radiation ●ffectively
rtorage ;ings ●t ●nergiee

greater than !00 CeV (LEP). ●+-e- linear collidero ●re
pronoced to circumvent thie problem. However, they

have subetanciel practichl difficulties in obtaining
●dequete luminosity, ●re very ●xpensive, ●nd S1OO have
p-rcicle radiation problems that prevent practical

implementation ●t pmrticle ●nergiee >300 CeV. Another
●pproach, 6P and pp colliders, cen indeed reach multl-
TeV eilergies, but hadron-hedron interaction leek the
simplicity of lepton-lepton rolliaiona; lepton-lepton
●nd lepton-hsdron collidarc ●re nececcery to provide ●

complete picture of high-energy proceoaea.

Synchrotrons radiation varieo inversely ●s the

four~h power of the mass, ●o the radiation difficulties
of ● -e- machines cmn+be ●voided by the uee of “heavy
●lectron,” muons (II ‘U-), ●nd that Pos ibility i- the
subject of thie peper.

The principal liabilities of
lifetimee ●nd the large initial
muon beam en produced in w ~ecay.
givrn by

Eu
~ - 2.197 R 10-’) .— ●cc ,

%

muone sre their ehort
phasa-npace ●rsa of ●

Th~ lifetime ? ie

(1)

vherc
:hia i~~6.J”e ;;; ~&?’~t %r;~ ‘$e~~t; WvZI~
linac srrd for high-cneray otora~e rings ●nd rapid cy-
clinu eynchrotrono (eee b~low). The Imrge phaee-epece
●ree of ● muon beam can be damped u%in8 “ionixction
cooling .11 (*o deecrihed helov) to ● emell vslue ●u~t-
cble for hish-luminosity collidero.

in the following eectione, we will deecribe the
principle of muon coolina, dincuae coolin.q ecenarioe
●nd ●xperiment., ●nd then high-ener~fy collider applice-
tiona.

Muon Coolln~

The bacic re~chenlem of II cooling is diepleyed in
Fig. 10 The muou baam ie peosed through ● meterial
medium in which it lone. ●ner~y, principally through

I I
M$Q5m AKCL~ nATtw

9M-nOV LOSS IS Rwcnov 041M Is

AND DCMHD8 ON lnDIPEMoENT
UUOM Clwnov OF Muow RNcnov

Fig. 1. Sketch of “ionization cooling” principle.

interaction with ctomic ●lections. Following this, it
paosea through ●n ●ccelerating cavity where the average
longitudinal ●nergy 10US is restored. Energy cocling
occurs following

d(AEu) 3A
—t!

do
.. & AEP ,

u
(2)

where AE i- the muon energy deviation from the central
value, # 1s the number, of cooling cyclaa, Ap j. the

muon energy loea in the aboorber, ●nd the derivative i-
taken ●t tha central velue Eu. Cooling occure if the
derivative fe poeitive. For Eu <0.3 CeV, this ●norgy-
10DS rate derivative is nteeply negative for ●ll
●baorbing materials, but for Eu ~0.5 CeV, lt la Po*i-
tive with

aAl, %
5%

ro.2T.
u

(3)

The precioe value hae ● weak dependence on the ●beorber

mstarial, ●nd the ●ner~iec O.: ~ I!p < 2 Ce$ art resaon-
eble ●vrergie~ for muon rnllertjnn, Tho p bomm la re-

circulated through meny abmorber/accelerator cycle.

either by ● return path (coolinu ring) or repeated
●tructure (linec) to obtein the dssired final
distribution.

Traneveroe damping ●leo occuro bacouoe ●n~rgy loaa
le parellel to tha particle trajectory, vhercaa energy
Sain is longitudinal. l!xpreacin~ thie tranove sc ●ner-

Sy loee in terme o! tms ●mitcence, one obtaina 1

d c, %
—--pdn

for both traneveree dehreae of freedom.

(4)



. .
Am ●xchcnge in cooling rate between the longitudi-

nal (Eq. 3) ●nd ● transverse (Eq. ~) dimension can be
obtain d if a “wedge” ●bsorber in 8
Snyder !! diopernion region i. .sedy”n~~~ ~~~~
Enhanced ●nergy damping with thic method impllem de-
creased trsnsverme damping, whereas the gum of Cx, Cy,
AE damping rateo 1s constant:

&
EM

Y 2.2 I- constent ,
x,y, E

1!cool ,1
(5)

where C ‘1 dsmplng ●nergy In each dimen-
sion,

goo:ilm~’ ‘he ●
ne-l APO

The procea. 1. bacica lY similar to radiation
damping in ●f ●torage rings, i where ●nergy Iosc in
bending sections by synchrotrons radistion ic recovered
in rf cavities. Rmdiation damping 18 limited by quan-
tum fluctuation; similarly, muon cooling is limited by
statistical fluctuation in muon-atom interaction in
the ●bsorber.

The importent difference IS that muons decay, ●nd
cooling mutt be completed before decay occuro.
muon lifetime (Eq. 1) c~n be translated to ● p%
lungth (EIu s 1;

E
LV - 6.59 II 102 Lmetero ,

‘u

which can be translated
8tora@.e,

Lp Lu ;

‘-jx-q-

into ● number of

(6)

turn~ of bebm

(7)

where 6 is the rint-averaRed bendlnn field and B. the

magnetic rigidity [B~(T-m) ‘1 3.3 E; (CeV)l. N 18
independent of Cu.

Muon cooling 10 limited by heating due to ctatio-
tical fluctuation. in tha number ●nd mnergy cxchenge in
the muon-elactron collisions in the ●bsorber. h *@ti-
mate of thio hehtinc in ●ner~y cooling can be obtained
by noting that tht mtmn ● ●r~y, ●xchcnce la the mea
●lectron ionization ●nerty I !
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PIs. 2. Uoe of varyint thickneom ●boorber to ●nhenc-
●nergy dependence of ●nerRy :.oes.

I ~ 10 Zab, ev . (8)

The number of collisfonfi per coollng c cle is N -A /1
end the rmo energy tpl:ad 10 - I cr ~. ComMni’ng
cooling with heating, we obtcin

2AV
*<(AE)2> z - —

E
C(AE)2>+ AJ ,

cool *Z
(9)

which hao ●n equilibrium solution indicating the Ilmits
of muon ●nergy cooling,

IE cool *Z
<(AE)2>ms = z

For typical value8 (Ecool,z

.

- 2 Cev),

(lo)

(11)

Trancveroe cooling i~ severely limited by multiple
small-angle ●laotlc scattering, mostly Coulomb scatter-
ing from the nuclei. The mean scattering sngle in
passing through ●n ●boorber of t Ickness 6 cen be ●oti-
mated by the following ●quationt 9

r \#14 (*V)
e—nn9 EB (t4eV) &

(12)

where ~ is the rsdimtion length of the ●bsorber mm:er-
1s1. Tfie coaling equation for traneveroe ●mittsnce csn

thm be written ●s

dcx ax

T---c’+T(f)z& ‘
(13)

where B
f

ie the C-S betatron function ●t th? ●boorber.
The ●au librium ●mittarlce i-

fJx (14 2 &cool,x

Co-T’q) — “
(g%)

(14)

The product (~ %) dependt upon theeb~orber ●nd i,

5 (.100 *V for Em or c butlarg~st for 1~ •l~mrntn
-7 MxV for }b or U). Tho ●ppearonca of Sx in Cq. (14)
lndicateo optimum nmittanco cooling requi+ict very
atron. focuoin. to a low value of Ox at the ●boorber.
Note thet the length of the ●boorber mu-t he 10CO than



.

;

-2 8X, ●nd obtuining maximum shoorption in minimum
length requires ~ ●lementk, opposing the previous
constraint.

We nc. ‘.re that the constraint Labs ~ 2 8X can
be relaxea the ●bsorber is en ●ctive focusing ●le-
oent (Iuch at lithium lens). Optimum II coolers will
probably incl, such elements in some portion of their
structure.

Nucm Cocler- eslgn Outlines ●nJ Experiments

In this ●ectlon we outline some feasible u cooler
designs and ●xperiments. Two basic ●pproaches ●re ●ug-

6e#ted: ●torage ring ●nd linacs. We ●xpect that

optimum deoigns to obtain minimum phase space will com-
bine these in ● multistage my-tern.

We first conoider ● storage-ring ●yetem. Figure 3
●hotw the basic component: ● rapid-cycling p synchto-
tron for m production, a m-decay line, and a storage
~ing for l-CeV U. The muon ●tortge ri g ia ● rela-
tively modest device with conventional magnets (<2T)
●nd modest cooling goal- suitable for ● p-p collider.

A cecond ttage would probably be necessary to
●cilieve the low$r tranoverce phdse-apace dennltiet
necessary for ● u -u- collider; it is difficult to cool
transverse ●mittance IIy uore than a factor of ’30 in a

single rlc storage ring becauoe of the focuoing required
in the ●bsorber. A oecond ctage using superconducting

magnet c (B 1 10T) will obtain CL(l COV) < 2.O~=ad.
Higher fieldo #nd optimized deaigna will obtain smaller
c , but c ~ 0.5 mm-mad ●ppears impractical. We note

iit at u coo lng requirements are ideal for use of mAXl-
mum field superconducting magnetc (dc operation, low-
particle flux, modest sizeo).

Focusing requirement- ●re relaxed in ● u linac
where magnet ●pertureo can be taduced, providing
stronger focusing, #s the beam it cooled. Beam lose
from decay 1s ●lso reduced. Figure 4 ohows ● mode-t

flrot-stage B cooling (100 w * 10 W) linac using con-
ventional magnets. A cecond stage with superconducting
mabnecs can obtain [1 $ 2 w mo-mrad.

Existing -1-CWV storage rings may be modified with
low-beta inoertiona ●nd ●dditional rf for experiment-
testing P cooling concept-. Acceleration tin the order
of 10 $leV/turn is required to obtain cnoling befora
decay, One candidate la the Fetmllab 600-MeV/c “elec-
tron cooling rfnu.” outfitted with -5 to 10 NoV of rf- -.
borrowed from the future “Oebuncher.”
tarfiet can bo u-d to provide 11’c to

● decsy lint to provide u’-. Another
SLC damping ring with ●dditional rf

(instead of ●+).

TAnOIT

The ~ production

be transported in
candidate io ●

and ●ome u source
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Fig. 3. Nuon coolinS ring.

Fig. 4. Sketch of muon cooling llnac.

Application of Cooled Nuons

in High-Energy Accelerator

Cooled muon beams have man> possible uses In hlgh-

●nergy ●ccelerator.
9

In thib aecti n, we will empha-
size application not ●cccsaible to ● machines, such

●s colliders ●t ~0.5-TeV ●nergiec.

A. p+-p- Rapid-Cycling Collider

Moat collider ●pplication viii require a high-
intenaity muon *ource ●t ● frequency matched to the
muon lifetime. At 1 TeV, I E 0.02 s, this is reason-
●bly well mztched to ● hi~{-intenalty 30- to 60-Hz
rapid-cycling proton oynchrotron.

In Fig. 5 we outline the major componen!e of ●

l-TeV u collfder: c rapid-cycllng proton ●ynchrotron
with target to produce w’s; ● dacay c annel (or “ato-

kchastic lnjaction” into ● storage ring) for w ● u de-
cay; ● mtoragc-ringflinac ●ymtem for u cooling; ●nd ● u
linac (or “bootter”) for injection into ● rapid-cycling
nynchrotron with period matched tn the proton cynchro-

tron. In thla ●xample the u cynchrotrol. is simply s

conventional Iarser vl~roion of the proton oyr,chrotron.

We assume from previoun calculation that -.5 a 10-3
●tored muons ●re obtained f< om ●ach primary proton.

The U+-P- eolllder Iuminonlty L may be ●stimated
uming

f. nt nB N+ ~’
LY .

4W B* c*
(15)

Fig. 5, l-TeV ~ rapid-cycling ●ynch:otron.



With 2 x 1013 protons/pulse, we obtain -1011 stored Vi

which may be organized into n
?

E 2 bunches with N+ =
N- - 5 x 1010 u/bunch. ‘The CYC1 ng frequency (30 31z~
19 fo; nt 1. the mean number of storage turnc (300);

and we may ●atimete B* s 0.3 cm ●nd C* z 2 x 10-7 cm-R
●t 1 TeV. We obteln L ~ 1032 Cm-z S-l, ●n ~.dequately
high+luminoaity. The same aynchrotron -y be ueed ●a ●

P--P collider ● t high lumlnorlty, with more relaxed
requlrementa on N_, B*, nnd c*. The scenario :., in
principle, ●asier but more ●xpensive ● t higher ●aer-
gies.

B. Linac/Storage-Ring Scenario

Cooled muons may be suitable for i~jection in ●

high-gradient linoc. Skrinak{lauggested acceleration
of ti’a in hia “proton klystron. Other linac ideas
such ●s “aurfatrona, “ “wake fields,” ●tc., may be more
readily ●daptable to II ●cceleration than ● because of
the u immunity to synchrotrons radiation, bremaetrahlung
and particle-medium Interaction.

Acsumlng ● ●uitatle high-gradient linac, II+-U-
(and u-P) collision mey be obtained in ● dc cuper-
conductlng ring which ●c:epta the high-energy output
beam (mee Fig. 6). Lutninomity can, in p=inclple, be
higher than in the previous example (L ~ 1033), cince
ctronger fields will increaaa n t (the number of beam-
ctorage turns) and decreaae 9*, ●nd beam loea in ●ccel-
eratiou la reduced.

c. u-p Colliderc

An important ●dvantage
a+-e-

of U+-U- collldera over
10 that u-p colliaionc may ●lao occur in the ●aw

ring. In the rapid-cycling aynchrotron p~aconc may be
injected with 11-, ●nd in the storage ring ●cenarlo they
may be stored before p- injection. The revolution
frequencies ● re r,aturally mlmatched because of the
different vnlocitteo ● t ●qual ●nargies. They can,be
rematched2 by displacing the be~ma in ●nergy under the
rondltion (high ●nergy).

Fig. 6. II

—.
P

linaclatorage-ring system.

(16)

where Apfp is the momentum offset, Yt the transition
●nergy of the ring, and

““~p~tain yt
re the kinetic factors.

At 1 TeV with Ap/p - 10- E 45, ● reason-

●ble value.

1.

2.

3.

.%.
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